SGD: Weighted samples#

Plot decision function of a weighted dataset, where the size of points is proportional to its weight.

plot sgd weighted samples
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn import linear_model

# we create 20 points
np.random.seed(0)
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
y = [1] * 10 + [-1] * 10
sample_weight = 100 * np.abs(np.random.randn(20))
# and assign a bigger weight to the last 10 samples
sample_weight[:10] *= 10

# plot the weighted data points
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))
fig, ax = plt.subplots()
ax.scatter(
    X[:, 0],
    X[:, 1],
    c=y,
    s=sample_weight,
    alpha=0.9,
    cmap=plt.cm.bone,
    edgecolor="black",
)

# fit the unweighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
no_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["solid"])

# fit the weighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y, sample_weight=sample_weight)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
samples_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["dashed"])

no_weights_handles, _ = no_weights.legend_elements()
weights_handles, _ = samples_weights.legend_elements()
ax.legend(
    [no_weights_handles[0], weights_handles[0]],
    ["no weights", "with weights"],
    loc="lower left",
)

ax.set(xticks=(), yticks=())
plt.show()

Total running time of the script: (0 minutes 0.070 seconds)

Related examples

SVM: Weighted samples

SVM: Weighted samples

SVM Exercise

SVM Exercise

Illustration of Gaussian process classification (GPC) on the XOR dataset

Illustration of Gaussian process classification (GPC) on the XOR dataset

SVM Margins Example

SVM Margins Example

Gallery generated by Sphinx-Gallery