FixedThresholdClassifier#
- class sklearn.model_selection.FixedThresholdClassifier(estimator, *, threshold='auto', pos_label=None, response_method='auto', prefit=False)[source]#
Binary classifier that manually sets the decision threshold.
This classifier allows to change the default decision threshold used for converting posterior probability estimates (i.e. output of
predict_proba
) or decision scores (i.e. output ofdecision_function
) into a class label.Here, the threshold is not optimized and is set to a constant value.
Read more in the User Guide.
Added in version 1.5.
- Parameters:
- estimatorestimator instance
The binary classifier, fitted or not, for which we want to optimize the decision threshold used during
predict
.- threshold{“auto”} or float, default=”auto”
The decision threshold to use when converting posterior probability estimates (i.e. output of
predict_proba
) or decision scores (i.e. output ofdecision_function
) into a class label. When"auto"
, the threshold is set to 0.5 ifpredict_proba
is used asresponse_method
, otherwise it is set to 0 (i.e. the default threshold fordecision_function
).- pos_labelint, float, bool or str, default=None
The label of the positive class. Used to process the output of the
response_method
method. Whenpos_label=None
, ify_true
is in{-1, 1}
or{0, 1}
,pos_label
is set to 1, otherwise an error will be raised.- response_method{“auto”, “decision_function”, “predict_proba”}, default=”auto”
Methods by the classifier
estimator
corresponding to the decision function for which we want to find a threshold. It can be:if
"auto"
, it will try to invoke"predict_proba"
or"decision_function"
in that order.otherwise, one of
"predict_proba"
or"decision_function"
. If the method is not implemented by the classifier, it will raise an error.
- prefitbool, default=False
Whether a pre-fitted model is expected to be passed into the constructor directly or not. If
True
,estimator
must be a fitted estimator. IfFalse
,estimator
is fitted and updated by callingfit
.Added in version 1.6.
- Attributes:
- estimator_estimator instance
The fitted classifier used when predicting.
classes_
ndarray of shape (n_classes,)Classes labels.
- n_features_in_int
Number of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.
- feature_names_in_ndarray of shape (
n_features_in_
,) Names of features seen during fit. Only defined if the underlying estimator exposes such an attribute when fit.
See also
sklearn.model_selection.TunedThresholdClassifierCV
Classifier that post-tunes the decision threshold based on some metrics and using cross-validation.
sklearn.calibration.CalibratedClassifierCV
Estimator that calibrates probabilities.
Examples
>>> from sklearn.datasets import make_classification >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.metrics import confusion_matrix >>> from sklearn.model_selection import FixedThresholdClassifier, train_test_split >>> X, y = make_classification( ... n_samples=1_000, weights=[0.9, 0.1], class_sep=0.8, random_state=42 ... ) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, stratify=y, random_state=42 ... ) >>> classifier = LogisticRegression(random_state=0).fit(X_train, y_train) >>> print(confusion_matrix(y_test, classifier.predict(X_test))) [[217 7] [ 19 7]] >>> classifier_other_threshold = FixedThresholdClassifier( ... classifier, threshold=0.1, response_method="predict_proba" ... ).fit(X_train, y_train) >>> print(confusion_matrix(y_test, classifier_other_threshold.predict(X_test))) [[184 40] [ 6 20]]
- property classes_#
Classes labels.
- decision_function(X)[source]#
Decision function for samples in
X
using the fitted estimator.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where
n_samples
is the number of samples andn_features
is the number of features.
- Returns:
- decisionsndarray of shape (n_samples,)
The decision function computed the fitted estimator.
- fit(X, y, **params)[source]#
Fit the classifier.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Training data.
- yarray-like of shape (n_samples,)
Target values.
- **paramsdict
Parameters to pass to the
fit
method of the underlying classifier.
- Returns:
- selfobject
Returns an instance of self.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routingMetadataRouter
A
MetadataRouter
encapsulating routing information.
- get_params(deep=True)[source]#
Get parameters for this estimator.
- Parameters:
- deepbool, default=True
If True, will return the parameters for this estimator and contained subobjects that are estimators.
- Returns:
- paramsdict
Parameter names mapped to their values.
- predict(X)[source]#
Predict the target of new samples.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
The samples, as accepted by
estimator.predict
.
- Returns:
- class_labelsndarray of shape (n_samples,)
The predicted class.
- predict_log_proba(X)[source]#
Predict logarithm class probabilities for
X
using the fitted estimator.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where
n_samples
is the number of samples andn_features
is the number of features.
- Returns:
- log_probabilitiesndarray of shape (n_samples, n_classes)
The logarithm class probabilities of the input samples.
- predict_proba(X)[source]#
Predict class probabilities for
X
using the fitted estimator.- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where
n_samples
is the number of samples andn_features
is the number of features.
- Returns:
- probabilitiesndarray of shape (n_samples, n_classes)
The class probabilities of the input samples.
- score(X, y, sample_weight=None)[source]#
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.
- Parameters:
- Xarray-like of shape (n_samples, n_features)
Test samples.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
True labels for
X
.- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- Returns:
- scorefloat
Mean accuracy of
self.predict(X)
w.r.t.y
.
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
Estimator parameters.
- Returns:
- selfestimator instance
Estimator instance.
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') FixedThresholdClassifier [source]#
Request metadata passed to the
score
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed toscore
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it toscore
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.Added in version 1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
Metadata routing for
sample_weight
parameter inscore
.
- Returns:
- selfobject
The updated object.
Gallery examples#
Release Highlights for scikit-learn 1.5
Post-tuning the decision threshold for cost-sensitive learning