Note
Go to the end to download the full example code. or to run this example in your browser via Binder
The Digit Dataset#
This dataset is made up of 1797 8x8 images. Each image, like the one shown below, is of a hand-written digit. In order to utilize an 8x8 figure like this, we’d have to first transform it into a feature vector with length 64.
See here for more information about this dataset.
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.pyplot as plt
from sklearn import datasets
# Load the digits dataset
digits = datasets.load_digits()
# Display the last digit
plt.figure(1, figsize=(3, 3))
plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation="nearest")
plt.show()
Total running time of the script: (0 minutes 0.048 seconds)
Related examples
Recognizing hand-written digits
Recognizing hand-written digits
Feature agglomeration
Various Agglomerative Clustering on a 2D embedding of digits
Various Agglomerative Clustering on a 2D embedding of digits
Label Propagation digits: Demonstrating performance
Label Propagation digits: Demonstrating performance