.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/miscellaneous/plot_display_object_visualization.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_miscellaneous_plot_display_object_visualization.py: =================================== Visualizations with Display Objects =================================== .. currentmodule:: sklearn.metrics In this example, we will construct display objects, :class:`ConfusionMatrixDisplay`, :class:`RocCurveDisplay`, and :class:`PrecisionRecallDisplay` directly from their respective metrics. This is an alternative to using their corresponding plot functions when a model's predictions are already computed or expensive to compute. Note that this is advanced usage, and in general we recommend using their respective plot functions. .. GENERATED FROM PYTHON SOURCE LINES 17-21 .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause .. GENERATED FROM PYTHON SOURCE LINES 22-29 Load Data and train model ------------------------- For this example, we load a blood transfusion service center data set from `OpenML `. This is a binary classification problem where the target is whether an individual donated blood. Then the data is split into a train and test dataset and a logistic regression is fitted with the train dataset. .. GENERATED FROM PYTHON SOURCE LINES 29-41 .. code-block:: Python from sklearn.datasets import fetch_openml from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler X, y = fetch_openml(data_id=1464, return_X_y=True) X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) clf = make_pipeline(StandardScaler(), LogisticRegression(random_state=0)) clf.fit(X_train, y_train) .. raw:: html
Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('logisticregression', LogisticRegression(random_state=0))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


.. GENERATED FROM PYTHON SOURCE LINES 42-47 Create :class:`ConfusionMatrixDisplay` ############################################################################# With the fitted model, we compute the predictions of the model on the test dataset. These predictions are used to compute the confusion matrix which is plotted with the :class:`ConfusionMatrixDisplay` .. GENERATED FROM PYTHON SOURCE LINES 47-55 .. code-block:: Python from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix y_pred = clf.predict(X_test) cm = confusion_matrix(y_test, y_pred) cm_display = ConfusionMatrixDisplay(cm).plot() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_001.png :alt: plot display object visualization :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 56-61 Create :class:`RocCurveDisplay` ############################################################################# The roc curve requires either the probabilities or the non-thresholded decision values from the estimator. Since the logistic regression provides a decision function, we will use it to plot the roc curve: .. GENERATED FROM PYTHON SOURCE LINES 61-68 .. code-block:: Python from sklearn.metrics import RocCurveDisplay, roc_curve y_score = clf.decision_function(X_test) fpr, tpr, _ = roc_curve(y_test, y_score, pos_label=clf.classes_[1]) roc_display = RocCurveDisplay(fpr=fpr, tpr=tpr).plot() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_002.png :alt: plot display object visualization :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/metrics/_plot/roc_curve.py:174: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. .. GENERATED FROM PYTHON SOURCE LINES 69-73 Create :class:`PrecisionRecallDisplay` ############################################################################# Similarly, the precision recall curve can be plotted using `y_score` from the prevision sections. .. GENERATED FROM PYTHON SOURCE LINES 73-78 .. code-block:: Python from sklearn.metrics import PrecisionRecallDisplay, precision_recall_curve prec, recall, _ = precision_recall_curve(y_test, y_score, pos_label=clf.classes_[1]) pr_display = PrecisionRecallDisplay(precision=prec, recall=recall).plot() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_003.png :alt: plot display object visualization :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 79-85 Combining the display objects into a single plot ############################################################################# The display objects store the computed values that were passed as arguments. This allows for the visualizations to be easliy combined using matplotlib's API. In the following example, we place the displays next to each other in a row. .. GENERATED FROM PYTHON SOURCE LINES 85-93 .. code-block:: Python import matplotlib.pyplot as plt fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 8)) roc_display.plot(ax=ax1) pr_display.plot(ax=ax2) plt.show() .. image-sg:: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_004.png :alt: plot display object visualization :srcset: /auto_examples/miscellaneous/images/sphx_glr_plot_display_object_visualization_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/sklearn/metrics/_plot/roc_curve.py:174: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument. .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 1.673 seconds) .. _sphx_glr_download_auto_examples_miscellaneous_plot_display_object_visualization.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/miscellaneous/plot_display_object_visualization.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_display_object_visualization.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_display_object_visualization.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_display_object_visualization.zip ` .. include:: plot_display_object_visualization.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_