.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/linear_model/plot_ols.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_linear_model_plot_ols.py: ========================================================= Linear Regression Example ========================================================= The example below uses only the first feature of the `diabetes` dataset, in order to illustrate the data points within the two-dimensional plot. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, residual sum of squares and the coefficient of determination are also calculated. .. GENERATED FROM PYTHON SOURCE LINES 16-64 .. image-sg:: /auto_examples/linear_model/images/sphx_glr_plot_ols_001.png :alt: plot ols :srcset: /auto_examples/linear_model/images/sphx_glr_plot_ols_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Coefficients: [938.23786125] Mean squared error: 2548.07 Coefficient of determination: 0.47 | .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True) # Use only one feature diabetes_X = diabetes_X[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes_y[:-20] diabetes_y_test = diabetes_y[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients print("Coefficients: \n", regr.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, diabetes_y_pred)) # The coefficient of determination: 1 is perfect prediction print("Coefficient of determination: %.2f" % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color="black") plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3) plt.xticks(()) plt.yticks(()) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.033 seconds) .. _sphx_glr_download_auto_examples_linear_model_plot_ols.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/linear_model/plot_ols.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_ols.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_ols.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_ols.zip ` .. include:: plot_ols.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_