.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/ensemble/plot_adaboost_regression.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_ensemble_plot_adaboost_regression.py: ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1]_ algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. See :ref:`sphx_glr_auto_examples_ensemble_plot_hgbt_regression.py` for an example showcasing the benefits of using more efficient regression models such as :class:`~ensemble.HistGradientBoostingRegressor`. .. [1] `H. Drucker, "Improving Regressors using Boosting Techniques", 1997. `_ .. GENERATED FROM PYTHON SOURCE LINES 22-25 Preparing the data ------------------ First, we prepare dummy data with a sinusoidal relationship and some gaussian noise. .. GENERATED FROM PYTHON SOURCE LINES 25-35 .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import numpy as np rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) .. GENERATED FROM PYTHON SOURCE LINES 36-44 Training and prediction with DecisionTree and AdaBoost Regressors ----------------------------------------------------------------- Now, we define the classifiers and fit them to the data. Then we predict on that same data to see how well they could fit it. The first regressor is a `DecisionTreeRegressor` with `max_depth=4`. The second regressor is an `AdaBoostRegressor` with a `DecisionTreeRegressor` of `max_depth=4` as base learner and will be built with `n_estimators=300` of those base learners. .. GENERATED FROM PYTHON SOURCE LINES 44-60 .. code-block:: Python from sklearn.ensemble import AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor( DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng ) regr_1.fit(X, y) regr_2.fit(X, y) y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) .. GENERATED FROM PYTHON SOURCE LINES 61-65 Plotting the results -------------------- Finally, we plot how well our two regressors, single decision tree regressor and AdaBoost regressor, could fit the data. .. GENERATED FROM PYTHON SOURCE LINES 65-80 .. code-block:: Python import matplotlib.pyplot as plt import seaborn as sns colors = sns.color_palette("colorblind") plt.figure() plt.scatter(X, y, color=colors[0], label="training samples") plt.plot(X, y_1, color=colors[1], label="n_estimators=1", linewidth=2) plt.plot(X, y_2, color=colors[2], label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show() .. image-sg:: /auto_examples/ensemble/images/sphx_glr_plot_adaboost_regression_001.png :alt: Boosted Decision Tree Regression :srcset: /auto_examples/ensemble/images/sphx_glr_plot_adaboost_regression_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.411 seconds) .. _sphx_glr_download_auto_examples_ensemble_plot_adaboost_regression.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/ensemble/plot_adaboost_regression.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_adaboost_regression.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_adaboost_regression.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_adaboost_regression.zip ` .. include:: plot_adaboost_regression.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_