.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/cluster/plot_cluster_iris.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_cluster_plot_cluster_iris.py: ========================================================= K-means Clustering ========================================================= The plot shows: - top left: What a K-means algorithm would yield using 8 clusters. - top right: What using three clusters would deliver. - bottom left: What the effect of a bad initialization is on the classification process: By setting n_init to only 1 (default is 10), the amount of times that the algorithm will be run with different centroid seeds is reduced. - bottom right: The ground truth. .. GENERATED FROM PYTHON SOURCE LINES 20-88 .. image-sg:: /auto_examples/cluster/images/sphx_glr_plot_cluster_iris_001.png :alt: 8 clusters, 3 clusters, 3 clusters, bad initialization, Ground Truth :srcset: /auto_examples/cluster/images/sphx_glr_plot_cluster_iris_001.png :class: sphx-glr-single-img .. code-block:: Python # Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause import matplotlib.pyplot as plt # Though the following import is not directly being used, it is required # for 3D projection to work with matplotlib < 3.2 import mpl_toolkits.mplot3d # noqa: F401 import numpy as np from sklearn import datasets from sklearn.cluster import KMeans np.random.seed(5) iris = datasets.load_iris() X = iris.data y = iris.target estimators = [ ("k_means_iris_8", KMeans(n_clusters=8)), ("k_means_iris_3", KMeans(n_clusters=3)), ("k_means_iris_bad_init", KMeans(n_clusters=3, n_init=1, init="random")), ] fig = plt.figure(figsize=(10, 8)) titles = ["8 clusters", "3 clusters", "3 clusters, bad initialization"] for idx, ((name, est), title) in enumerate(zip(estimators, titles)): ax = fig.add_subplot(2, 2, idx + 1, projection="3d", elev=48, azim=134) est.fit(X) labels = est.labels_ ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(float), edgecolor="k") ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticklabels([]) ax.zaxis.set_ticklabels([]) ax.set_xlabel("Petal width") ax.set_ylabel("Sepal length") ax.set_zlabel("Petal length") ax.set_title(title) # Plot the ground truth ax = fig.add_subplot(2, 2, 4, projection="3d", elev=48, azim=134) for name, label in [("Setosa", 0), ("Versicolour", 1), ("Virginica", 2)]: ax.text3D( X[y == label, 3].mean(), X[y == label, 0].mean(), X[y == label, 2].mean() + 2, name, horizontalalignment="center", bbox=dict(alpha=0.2, edgecolor="w", facecolor="w"), ) ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y, edgecolor="k") ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticklabels([]) ax.zaxis.set_ticklabels([]) ax.set_xlabel("Petal width") ax.set_ylabel("Sepal length") ax.set_zlabel("Petal length") ax.set_title("Ground Truth") plt.subplots_adjust(wspace=0.25, hspace=0.25) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.265 seconds) .. _sphx_glr_download_auto_examples_cluster_plot_cluster_iris.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-learn/scikit-learn/main?urlpath=lab/tree/notebooks/auto_examples/cluster/plot_cluster_iris.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_cluster_iris.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_cluster_iris.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_cluster_iris.zip ` .. include:: plot_cluster_iris.recommendations .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_